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Abstract—This paper presents an algorithmic 
implementation of the Binomial Option Pricing Model 
(BOPM) using a bottom-up dynamic programming 
approach to efficiently value US stock options. Unlike 
closed-form solutions such as Black-Scholes, which are 
limited to European-style options, the binomial model offers 
greater flexibility by supporting early exercise features, 
making it applicable to both European- and American-style 
contracts. This study focuses on translating the model’s 
recursive logic into a computationally efficient structure. 
Key input variables, including spot price, historical 
volatility, dividend yield, and risk-free rate, are derived from 
real market data. The model is applied to high-volume US 
equities, with results showing theoretical consistency: for 
non-dividend-paying stocks, American call options exhibit 
no optimal early exercise opportunity and therefore match 
their European counterparts in value. A sensitivity analysis 
on the discretization parameter N reveals convergence 
behavior in option prices as the number of time steps 
increases. These findings validate the stability and reliability 
of the binomial method under varying model resolutions. 
Overall, the study demonstrates how dynamic programming 
reduces the model’s time complexity from exponential to 
polynomial, making BOPM a practical, scalable, and robust 
tool for quantitative finance and algorithmic analysis. 

 
Keywords—Binomial model, Option pricing, Dynamic 

programming, US stock options, Financial engineering 
 

I.   INTRODUCTION 

In modern finance, financial derivatives such as stock 
options are indispensable tools for risk management and 
investment strategies. The accurate valuation of these 
instruments is critical for market participants to hedge 
exposure and speculate on future asset movements. The 
groundbreaking Black-Scholes model provides a 
foundational continuous-time framework for this purpose  
[1].  

However, its practical application is constrained by 
rigid assumptions, e.g., constant volatility and dividend 
payouts, and its difficulty in pricing American-style 
options which can be exercised prior to expiration. As an 
alternative, the Binomial Option Pricing Model (BOPM) 
offers a more intuitive and flexible discrete-time 
approach, capable of overcoming these limitations by 
modeling asset price evolution as a lattice of possible 
future outcomes [2]. 

The computational core of the BOPM involves a 
backward induction process, starting from the option's 
known value at expiration. A naive recursive 
implementation of this process is highly inefficient due to 
redundant calculations of the same states, leading to an 
exponential time complexity. This makes Dynamic 
Programming (DP) the ideal strategy, as it systematically 
solves each subproblem once and stores the result, 
transforming the problem into one with polynomial-time 
complexity. 

This paper presents a comprehensive analysis of the 
Binomial Option Pricing Model from an algorithmic 
standpoint. The primary objectives are to develop an 
efficient implementation of Binomial Option Pricing 
Model using a bottom-up dynamic programming 
approach and to evaluate its performance in pricing both 
European- and American-style call options. By focusing 
on numerical stability, computational complexity, and 
early exercise behavior, the study highlights dynamic 
programming as a powerful algorithmic paradigm for 
solving core problems in quantitative finance, bridging 
the gap between financial theory and practical, 
high-performance computation. 

 
  II.  THEORETICAL FOUNDATION 

A. Financial Derivatives and Stock Options 
A derivative is a financial contract that derives its value 

from an underlying asset, asset group, or benchmark. As 
agreements between two or more parties, derivatives are 
traded either on centralized exchanges or in private 
over-the-counter (OTC) markets, with their prices 
fluctuating in relation to the value of their underlying 
assets.  

Utilized for risk management, speculation, or 
leveraging a position, derivatives are primarily classified 
into two categories. "Lock" products, including futures, 
forwards, and swaps, legally bind all parties to the 
contract's terms for its entire duration. Conversely, 
"option" products provide the holder the right, but not the 
obligation, to buy or sell the underlying asset at a 
specified price [3]. 

A stock option is one form of option product with a 
stock as its underlying asset. In the equity market, options 
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enable traders to express bullish or bearish expectations 
on a stock’s performance without being obligated to 
directly buy or sell the stock itself. Option holders may 
choose not to exercise their contract if it is 
out-of-the-money, meaning the market price of the stock 
makes the option unprofitable (e.g., a call option with a 
strike price higher than the current market price), allowing 
it to expire worthless. Alternatively, if the option is 
in-the-money, where exercising would result in a gain 
(e.g., a put option with a strike price above the market 
price), traders may sell the contract prior to expiration 
date to capture its remaining value [4]. 

Stock options consist of several fundamental 
parameters that are critical for traders and investors to 
comprehend [5]: 

1) Option Styles: There are two different styles of 
options when the contract can be exercised: 

a) European-style option: Less common in US 
markets, can only be exercised on the expiration 
date. 

b) American-style option: More flexible and 
common in US markets, can be exercised 
anytime between the purchase and expiration 
date. 

2) Expiration Date: This is the date on which the 
option contract expires. 

3) Strike Price: This is the fixed price at which the 
underlying stock can be bought (in the case of a call 
option) or sold (in the case of a put option). 

4) Contract Size: This defines the number of shares 
covered by a single option contract. In US equity markets, 
the contract size is typically 100 shares, meaning each 
option gives rights over 100 shares of the underlying 
stock. 

5) Premium: The premium is the price paid by the 
option buyer to the option seller for acquiring the 
contract, typically reflecting the option’s intrinsic value (if 
applicable)  and its time value. 

 
B. Option Pricing Models 

Option pricing models are mathematical frameworks 
that utilize a set of market variables to determine the 
theoretical fair value of an option. This theoretical value 
represents an estimate of what the option should be worth 
based on all available and relevant inputs, e.g., underlying 
price and strike price, time to expiration, interest rates, 
and volatility. Having an accurate estimate of the fair 
value of an option enables finance professionals to adjust 
their trading strategies and portfolios. As such, option 
pricing models serve as powerful tools involved in option 
trading and risk management practices [6, 7]. 

Before discussing different option pricing models, it is 
critical to comprehend the concept of risk-neutral 
probability,a foundational principle in modern 
quantitative finance and widely used in derivative pricing. 
A risk-neutral probability is a theoretical probability 
measure under which the expected return of all assets 
equals the risk-free-rate (a theoretical rate of return on an 

investment with zero risk, typically proxied by short-term 
US Treasury yield). This concept relies on two 
fundamental assumptions: 

1) The current value of an asset equals the expected 
value of its future payoffs, discounted at the risk-free rate. 

2) The market does not permit arbitrage opportunities. 
Under this measure, the price dynamics of assets are 
adjusted so that investors are considered indifferent to risk 
when computing expected payoffs. Risk-neutral 
probability allows option prices to be computed as the 
present value of expected payoffs under a transformed, 
arbitrage-free world. Option pricing can be approached 
through various methodologies [7]: 

1) Binomial Model: This model is based on the 
assumption of fully efficient markets. Under this 
assumption, the model allows for option valuation at 
discrete time intervals by constructing a price tree in 
which the underlying asset can either increase or decrease 
in value during each time step.  

Given the potential future prices of the underlying asset 
and the strike price of the option, the model calculates the 
corresponding option payoffs in each scenario. These 
payoffs are then discounted back to the present using a 
risk-free rate, resulting in an estimate of the option’s 
current theoretical value. 

 

Fig. 1. Two-period binomial tree visualization 
[Source: 

https://corporatefinanceinstitute.com/resources/derivatives/option-pricin
g-models/, Accessed: Jun. 21, 2025.] 

2) Black-Scholes Model: This model was discovered in 
1973 by economists Fischer Black and Myron Scholes, 
whose work received the Nobel Memorial Prize in 
Economic Sciences in 1997. The Black-Scholes model 
was developed primarily for pricing European options on 
stocks which operates under a set of assumptions 
regarding the distribution of the stock price and the 
economic environment. 

Assumptions about the stock price distribution include: 
a) Continuously compounded returns on the stock 

are normally distributed and independent over 
time. 

b) The volatility of continuously compounded 
returns is known and constant 

c) Future dividends are known. 
Assumptions about the economic environment include: 

a) The risk-free rate is known and constant. 
b) There are no transaction costs or taxes. 
c) It is possible to short-sell with no cost and to 

borrow at the risk-free rate. 
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Fig. 2. Black-scholes equation 
[Source: 

https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model, 
Accessed: Jun. 21, 2025.] 

3) Monte Carlo Simulation: This model simulates a 
large number of possible future stock price paths using 
stochastic processes, and then estimates the option’s value 
by averaging the discounted payoffs across all 
simulations.  It is particularly useful for pricing complex 
or path-dependent options. However, it is computationally 
intensive and less suitable for American-style options due 
to the challenge of modeling early exercise decisions. 

Among the three widely recognized option pricing 
models, this study focuses on the binomial model. The 
Black-Scholes model, while elegant and analytically 
tractable, relies on rigid assumptions and is restricted to 
European-style options which are less common in US 
markets. Monte Carlo simulation, on the other hand, is 
highly flexible and well suited for pricing complex, 
path-dependent derivatives, yet its computational intensity 
and limitations in modeling early exercise make it less 
appropriate for valuing American-style options. 

The binomial model serves as a compelling middle 
ground, i.e. mathematically structured yet practically 
adaptable. By modeling asset price movements in discrete 
time steps, it enables the construction of the recombining 
tree that effectively captures a range of market dynamics. 
Critically, it perfectly supports the valuation of 
American-style options by incorporating the possibility of 
early exercise at each node. In addition, its recursive 
nature aligns naturally with dynamic programming 
strategies and principles, making it particularly 
well-suited for an algorithmic implementation, which is 
the focus of this paper.  

 
C. Binomial Model for Option Pricing 

The binomial model is a discrete-time framework for 
calculating the fair value of financial options by modeling 
possible movements in the underlying asset’s price over 
successive time steps. Originally introduced by Cox, 
Ross, and Rubinstein in 1979, the model constructs a 
recombining binomial tree that represents the potential 
evolution of the underlying asset over time. At each node 
in the tree, the asset price may either increase by an up 
factor (u) or decrease by a down factor (d), thus creating a 
lattice of possible future prices. This structure allows for 
flexibility in handling early exercise features and 
non-linear payoff structures, making it especially useful 
for pricing both European-style options and 
American-style options [8]. 

Before constructing the binomial tree, several key 
inputs or variables must be defined to parameterize the 
model accurately. These inputs govern how the option 
behaves under the assumptions of the model and directly 

influence the valuation outcome: 
1) Spot Price (S0): The current market price of the 

underlying asset. It serves as the root of the binomial 
price tree. 

2) Strike Price (K): The fixed price at which the option 
can be exercised. It defines the payoff structure at each 
node. 

3) Time to Maturity (T): The total time remaining until 
the option expires, typically expressed in years. It 
determines the number of discrete steps N used in the tree: 

                                                                       (1)  ∆𝑡 =  𝑇
𝑁

4) Volatility (σ): The annualized standard deviation of 
the underlying asset’s continuously compounded returns. 
It measures the uncertainty in the asset price. This input is 
critical in calculating the up and down factors 

                                       (2) 𝑢 =  𝑒σ ∆𝑡,  𝑑 = 1
𝑢 =  𝑒−σ ∆𝑡

5) Risk-Free Rate (r): The annualized return of a 
riskless investment, often proxied by short-term US 
Treasury yield. It is utilized to discount figure option 
payoffs: 

                                                                                (3) 𝑒−𝑟∆𝑡

6) Dividend Yield (q): The continuous yield paid by the 
underlying asset. If dividend is not applicable, 
calculations incorporating dividend yield may use the 
value q = 0. 

7) Risk-Neutral Probability (p): Under the risk-neutral 
measure, the expected payoff of the option is computed 
using adjusted probabilities. The probability of an upward 
movement is: 

                                                                 (4) 𝑝 = 𝑒(𝑟−𝑞)∆𝑡− 𝑑
𝑢 − 𝑑

With the probability of downward movement: 

                                                                            (5) 1 − 𝑝

Once these parameters are established, the model 
proceeds with constructing the binomial price tree and 
computing the option value through backward induction. 
At each node (i, j) of the tree, the asset price is given by: 

                                                          (6) 𝑆
𝑖,𝑗

= 𝑆
0
 .  𝑢𝑗 .  𝑑𝑖−𝑗

where i denotes the time step, and j is the number of 
upward movements. This expression defines the structure 
of the tree and serves as the basis for calculating the 
terminal payoffs at maturity. 

Let S0 be the current spot price of the underlying asset, 
and let the option mature at time T, divided into N discrete 
steps. The time step Δt is given by Equation (1). The 
model uses the assumption of constant volatility σ and 
risk-free rate r. Under the Cox-Ross-Rubinstein (CRR) 
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formulation, the up factor (u) and down factor (d) are 
given by Equation (2). To remain arbitrage-free, the 
model employs risk-neutral valuation, in which the 
expected value of the option payoff is discounted at the 
value of r. The corresponding risk-neutral probability p of 
an upward price movement is given by Equation (4). 

Once the tree of possible asset prices has been 
completely constructed, the option value is determined by 
the backward induction process. For each terminal node j 
∈ {0, 1, ..., N}, the call and put option payoff (applicable 
for both European-style option and American-style 
option) are respectively computed as follows: 
  
                                              (7) 𝐶

𝑁,𝑗
= 𝑚𝑎𝑥(𝑆

𝑁,𝑗
− 𝐾,  0)

                                              (8) 𝑃
𝑁,𝑗

= 𝑚𝑎𝑥(𝐾 − 𝑆
𝑁,𝑗

,  0)

Then, working backwards from maturity to the present, 
the value of each exercise opportunities at each node (i, j) 
is obtained by discounting the expected value at the next 
step: 

                  (9) 𝑉
𝑖,𝑗

= 𝑒−𝑟∆𝑡. (𝑞. 𝑉
𝑖+1,𝑗+1

+ (1 − 𝑞). 𝑉
𝑖+1,𝑗

)

For American-style options, the model incorporates early 
exercise opportunities at each node by taking the 
maximum of the continuation value and the immediate 
payoff: 

              𝑉
𝑖,𝑗

= 𝑚𝑎𝑥(𝑃𝑎𝑦𝑜𝑓𝑓
𝑖,𝑗

 ,

                      )     (10) 𝑒−𝑟∆𝑡(𝑞. 𝑉
𝑖+1,𝑗+1

+ (1 − 𝑞). 𝑉
𝑖+1,𝑗

)

 
Fig. 3. Example of binomial tree visualization 

[Source: https://xplaind.com/552187/binomial-options-pricing-model, 
Accessed: Jun. 21, 2025.] 

D. Dynamic Programming Strategy 
Dynamic programming (DP) is an algorithm designed 

to optimize recursive approaches by eliminating 
redundant computations of identical subproblems. Its 
fundamental principle lies in storing the results of 
previously solved subproblems to ensure each is 
computed only once. Typically, a dynamic programming 
solution begins with a recursive formulation where the 
problem exhibits overlapping subproblems, meaning the 
same function is invoked multiple times with the same 
input parameters. To enhance computational efficiency, 

the outcomes of these recursive calls are cached and 
reused. There are two primary strategies of dynamic 
programming [10]: 

1) Top-Down Approach (Memoization): This approach 
keeps the solution recursive and adds a memoization to 
avoid repeated calls of the same subproblems. Before 
executing a recursive call, the algorithm first checks the 
memoization table to determine whether the subproblem 
has already been solved. If not, the recursive computation 
proceeds, and upon completion, the result is stored in the 
table for future reuse. 

2) Bottom-Up Approach (Tabulation): This approach 
begins with the smallest subproblems and incrementally 
builds up to the final solution. Rather than using 
recursion, it employs an iterative formulation to eliminate 
function call overhead. A dynamic programming table is 
initialized, where base cases are filled explicitly. 
Subsequently, the remaining entries are computed using 
the recursive relationship, applied directly on the table 
entries without making any actual recursive calls. 

The Binomial Option Pricing Model naturally aligns 
with the core principles of dynamic programming: 

1) Optimal Substructure: The value of an option at each 
node depends only on the values at its two immediate 
successor nodes. 

2) Overlapping Subproblems: Intermediate nodes can 
be reached via multiple paths, and a naive recursive 
implementation would redundantly recompute subtrees 
multiple times. 

The backward induction method employed in the 
binomial model is a direct application of the bottom-up 
dynamic programming strategy. It begins from the 
terminal payoffs at maturity and iteratively computes 
values backward to the root, efficiently building the final 
solution from simpler subproblems. 

By using dynamic programming, the computational 
efficiency is significantly enhanced. It reduces the time 
complexity of option valuation from exponential O(2N) in 
naive recursion to polynomial O(N2) with the binomial 
model. This makes multi-step pricing models 
computationally feasible and scalable for practical 
financial applications. 

 
E. US Stock Options and Market Context 

The United States (US) hosts the world's most active 
and liquid equity options market, where stock options are 
among the most widely traded financial instruments. This 
activity is heavily concentrated in a select group of 
high-profile companies. For instance, as of June 23, 2025, 
the most actively traded stock options were dominated by 
technology and growth stocks, with Tesla (TSLA) and 
Nvidia (NVDA) leading with daily volumes exceeding 
one million contracts each. Other highly traded options on 
this day included Advanced Micro Devices (AMD), Hims 
& Hers Health (HIMS), and Apple (AAPL). While the 
exact daily rankings may fluctuate, options on mega-cap 
stocks such as Amazon (AMZN) and Meta Platforms 
(META) also consistently rank among the most traded, 
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underscoring their central role in the strategies of both 
institutional and retail traders [11]. 

Given their high trading volume, US stock options 
provide a relevant and representative case study for 
evaluating option pricing models. While the majority of 
exchange-listed equity options in the US follow the 
American-style format, the Binomial Option Pricing 
Model offers the flexibility to handle both European-style 
(exercise at maturity) and American-style (early exercise 
allowed) options. As such, the model is well-suited for a 
broad range of equity derivatives. This study adopts an 
experimental design that accommodates both option 
types, enabling a comprehensive and realistic application 
of the model while emphasizing the importance of 
numerical accuracy in real-world financial computations. 

 
III.   IMPLEMENTATION 

  A. Programming Language and Libraries 
For the implementation of binomial option pricing 

model, Python is used as the programming language, 
leveraging its extensive ecosystem of supporting libraries. 
These libraries streamline the process of data collection, 
processing, analysis, and visualization:  

1) yfinance: Used to  fetch historical stock data, 
including price and dividend yields, directly from Yahoo 
Finance. 

2) pandas: Used for data manipulation and exporting 
variables to CSV files. 

3) numpy: Provides efficient numerical operations for 
building the binomial price tree and performing backward 
induction. 

4) matplotlib: Enables visualization of option pricing 
results and insights. 
 
  B. Data Collection and Variables Processing 

To calibrate the binomial model, we require several key 
inputs or variables derived from historical market data, 
e.g., the spot price (S0), risk-free rate (r), and dividend 
yield (q). 

TICKERS         = ["TSLA", "AAPL"]          
HISTORY_DAYS    = 178                        
RISK_FREE_RATE  = 0.04273                   

The equity tickers analyzed in this study include TSLA 
(Tesla) and AAPL (Apple), representing high-volume US 
stock options. A 178-day historical window, spanning 
from June 24, 2025 to the selected expiration date of 
December 27, 2025, is used to estimate the recent 
volatility of the underlying assets. The risk-free interest 
rate is fixed at 4.273%, corresponding to the U.S. 
3-month Treasury yield as of June 24, 2025.  

The spot price (S0) is defined as the most recent closing 
price of the asset over the selected window: 

 

spot_price = float(close_prices.iloc[-1]) 

The annualized historical volatility (σ) is computed 
from the standard deviation of log returns, scaled by the 
square root of 252 trading days: 

log_returns = np.log(close_prices / 
close_prices.shift(1)).dropna() 
volatility  = float(log_returns.std() * 
np.sqrt(252)) 

The dividend yield (q) is estimated based on the sum of 
dividends paid over the past 12 months, normalized by the 
current spot price: 

recent_div = dividends[dividends.index > 
(END_DATE - timedelta(days=365))] 
annual_div = recent_div.sum() 
dividend_yield = annual_div / spot_price 

The computed values for each ticker are stored in a 
structured CSV format for later use in the pricing model. 
This modular approach ensures  that the core variables 
required for binomial option pricing are efficiently 
extracted and persisted for subsequent modeling. The 
following shows an example of the exported variables for 
TSLA, including the spot price, historical volatility, 
risk-free rate, and dividend yield inside a CSV file: 

ticker,spot_price,volatility,risk_free_rate,di
vidend_yield 
TSLA,348.67999267578125,0.778321788296038,0.04
273,0.0 

  C. Binomial Option Pricing Model 
The binomial pricing model is implemented using a 

bottom-up dynamic programming approach to efficiently 
compute the values of both European and American call 
options. The model is parameterized using 
market-relevant values for Tesla (TSLA) as of June 24, 
2025: 
 

SPOT_PRICE      = 351.70     
STRIKE_PRICE    = 400         
VOLATILITY      = 0.7784      
RISK_FREE_RATE  = 0.04273     
T               = 175 / 365   
N               = 100         
DIVIDEND_YIELD  = 0.0         

To begin, the tree parameters including time increment, 
up and down movement factors, and risk-neutral 
probability are computed using Equation (1), (2), and (4) 
respectively: 
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dt = T / N 
u = np.exp(volatility * np.sqrt(dt)) 
d = 1 / u 
p = (np.exp((risk_free_rate - dividend_yield) 
* dt) - d) / (u - d) 

The binomial tree is generated in forward fashion using 
Equation (6). Only the terminal layer is explicitly 
computed, as backward induction is performed in-place: 

for j in range(N + 1): 
    price_tree[N, j] = spot_price * (u ** j) *  
    (d ** (N - j)) 

At maturity (t = T), the call option payoff is calculated 
using Equation (7): 

for j in range(N + 1): 
    european[N, j] = max(price_tree[N, j] -  
    strike_price, 0) 
    american[N, j] = european[N, j] 

 This expression is used to initialize both the 
European-style and American-style option value arrays in 
the model. It is important to note that this study focuses 
exclusively on call options, and does not explore put 
options or their payoff structures. This decision is made to 
maintain a consistent analytical scope, particularly in 
examining early exercise behavior and dynamic 
programming efficiency within the binomial framework. 

Utilizing backward induction, the option price is 
recursively computed from the terminal nodes back to the 
root by discounting the expected future value. 
European-style options are priced using Equation (9), 
whereas American-style options are computed using 
Equation (10), which additionally considers the 
possibility of early exercise at each node: 

for i in range(N - 1, -1, -1): 
    for j in range(i + 1): 
        # European 
        cont_val = np.exp(-risk_free_rate *   
        dt) * (p * european[i + 1, j + 1] + (1  
        - p) * european[i + 1, j]) 
 
        european[i, j] = cont_val 
 
        # American 
        cont_val_am = np.exp(-risk_free_rate *  
        dt) * (p * american[i + 1, j + 1] + (1  
        - p) * american[i + 1, j]) 
         
        early_ex       = max(price_tree[i, j]-  
        strike_price, 0) 
 
        american[i, j] = max(early_ex,  
        cont_val_am) 

As previously mentioned, the binomial model is capable 

of handling both European-style and American-style call 
options within the same tree structure. The key distinction 
lies in the exercise rules: European options can only be 
exercised at maturity, while American options allow early 
exercise at any point before expiration. This study 
demonstrates the model’s flexibility by evaluating both 
option styles, illustrating how the binomial method 
accommodates different contract specifications under a 
unified computational approach. 

  D. Number of Discrete Time Steps Sensitivity Test 
Among the parameters required by the binomial model, 

the number of discrete time steps (N) is unique in that it 
does not rely on historical data or market-derived inputs. 
Instead, N is a user-defined parameter that governs the 
resolution of the binomial tree and the granularity of price 
evolution across the time horizon. In this study, N is 
treated as a tunable hyperparameter, and its impact on the 
computed option prices is empirically evaluated.  

Using fixed inputs for the AAPL stock (spot price, 
volatility, risk-free rate, dividend yield, and maturity), we 
vary N across multiple values, specifically N = 10, N = 
50, N = 100, N = 250, N = 500, N = 1000,  N = 2500, and 
N = 5000, to observe how the discretization level affects 
call option prices. This experimentation helps validate 
convergence behavior of the model and assess how coarse 
or fine binomial grids influence pricing accuracy and 
early exercise evaluation. 
   

  IV.   RESULTS AND DISCUSSION 

  A. Binomial Model Valuation 
To evaluate the performance of the binomial option 

pricing model, we simulate a call option on Tesla (TSLA) 
using the input parameters shown in Table I. These values 
represent realistic market conditions as of  June 23, 2025 
and are used to build a 100-step (N = 100) binomial tree. 

 
TABLE I 

  TESLA BINOMIAL OPTION PRICING MODEL INPUTS 

Variablesa Valueb 

Spot Price (S0) $351.70 

Strike Price (K) $400.00 

Volatility (σ) 0.7783 

Risk-Free Rate (r) 0.04273 

Time to Maturity (T) 178/365 

Discrete Time Steps (N) 100 

Dividend Yield (q) 0.0 

 
The results of the model for both European and American 
call options are summarized in Table II. 
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TABLE II 
  BINOMIAL MODEL VALUATION RESULT 

Call Option Stylesa Valuated Premiumb 

European-style option $61.1437 

American-style option $61.1437 

 
As seen in Table II, both the European and American 

call options yield the same valuation of $61.1437. This is 
significantly higher than the observed market premium of 
$45.30 as of June 23, 2025. Given that the spot price 
($351.70) is below the strike price ($400.00), the option is 
currently out-of-the-money, which likely explains the 
lower market premium. 

Despite the American call option theoretically offering 
early exercise flexibility, its value is identical to the 
European counterpart. This phenomenon is expected in 
the absence of dividends and is further illustrated by the 
early exercise map shown in Figure 4. 

 

 
Fig. 4. American-style option vs European-style option option exercise 

[Source: Author’s visualization using Matplotlib] 

Figure 4 visualizes the early exercise decision across all 
nodes in the binomial tree: 

1) The x-axis represents the time steps i from initiation 
to maturity. 

2) The y-axis represents the number of up-movements j 
at each step. 

3) Node colors indicate the exercise behavior: 
a) Gray (0): The option is held (not exercised). 
b) Red (1): The option is exercised early. 

In this case, all nodes are gray, indicating that early 
exercise is never optimal at any point in the tree. This 
result aligns with theoretical expectations, i.e. for 
American call options without dividends, it is never 
optimal to exercise early. As a consequence, the early 
value is zero, and the American option behaves identically 
to its European counterpart, validating the correctness and 
consistency of the model implementation. 

 
  B. Number of Discrete Time Steps Sensitivity Test 

To examine the impact of the number of discrete time 
steps on the valuation accuracy of the binomial model, we 

conduct a sensitivity analysis on an Apple (AAPL) 
European-style call option to ensure that the pricing 
behavior (specifically the valuation at expiry) is uniform 
and consistent. The input parameters used for this test are 
summarized in Table III, and are consistent with real 
market data as in the TSLA case, except for the number of 
time steps N, which is varied across a wide range for 
convergence analysis. 
 

TABLE III 
  APPLE BINOMIAL OPTION PRICING MODEL INPUTS 

Variablesa Valueb 

Spot Price (S0) $201.425 

Strike Price (K) $250.000 

Volatility (σ) 0.411 

Risk-Free Rate (r) 0.04273 

Time to Maturity (T) 178/365 

Dividend Yield (q) 0.005 

 
The number of discrete steps tested includes N = 10, N 

= 50, N = 100, N = 250, N = 500, N = 1000,  N = 2500, 
and N = 5000. The resulting option premiums for each 
case are documented in Table IV. 

 
TABLE IV 

  DISCRETE TIME STEPS TO EUROPEAN-STYLE CALL OPTION 
SENSITIVITY TEST RESULT 

Number of Time Stepsa Valuated Premiumb 

10 $9.1679 

50 $9.2786 

100 $9.2314 

250 $9.2023 

500 $9.2261 

1000 $9.2166 

2500 $9.2191 

5000 $9.2198 

 
To visualize the convergence behavior, the results are 

also plotted in Figure 5. 
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Fig. 5. Discrete time steps to European-style call option price [Source: 

Author’s visualization using Matplotlib] 

As shown in Figure 5, the option price initially 
fluctuates across low values of N, with noticeable 
discrepancies between N = 10 and N = 250. These 
oscillations reflect the discretization error inherent in 
low-resolution trees. However, as N increases beyond 
1000, the option price stabilizes and converges towards 
approximately $9.22, indicating that the model becomes 
numerically stable at finer resolutions. This confirms a 
well-known property of the binomial model: as the 
number of time steps increases, the model’s valuation 
converges to its theoretical continuous-time limit (as 
approximated by the Black-Scholes model for European 
options). Therefore, selecting a sufficiently large N is 
essential to ensure accuracy, while avoiding unnecessary 
computational overhead. 

 
  V.   CONCLUSION 

This paper has successfully demonstrated the 
implementation of the Binomial Option Pricing Model 
using a bottom-up dynamic programming strategy for 
valuing both European and American-style call options. 
The application of this approach to real-world market data 
for stocks like Tesla (TSLA) and Apple (AAPL) yielded 
several key insights. First, the model correctly validated 
the financial principle that for an American call option on 
a non-dividend-paying stock, its value is identical to its 
European counterpart as there is no optimal time for early 
exercise. This was confirmed through both the valuation 
results and the early exercise decision map. 

Second, the sensitivity analysis on the number of 
discrete time steps (N) empirically verified the model's 
convergence property. As N increases, the calculated 
option price stabilizes, highlighting the trade-off between 
computational granularity and accuracy. The study 
ultimately affirms that dynamic programming is a highly 
effective and efficient algorithmic approach for option 
valuation. By reducing the problem's time complexity 
from an exponential O(2N) to a polynomial O(N2), it 
transforms a theoretically elegant model into a 
computationally feasible tool, perfectly suited for 
practical applications in quantitative finance. 
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  VII.   APPENDIX 

The complete source code used for the implementation 
of the binomial option pricing model is available on 
GitHub. Access the code repository here: GitHub 
Repository Link.  
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